A novel miniaturized passively Q-switched pulse-burst laser for engine ignition
نویسندگان
چکیده
منابع مشابه
Characterization of energy transfer for passively Q-switched laser ignition.
Miniaturized passively Q-switched Nd:YAG/Cr(4+):YAG lasers are promising candidates as spark sources for sophisticated laser ignition. The influence of the complex spatial-temporal pulse profile of such lasers on the process of plasma breakdown and on the energy transfer is studied. The developed measurement technique is applied to an open ignition system as well as to prototypes of laser spark...
متن کامل2 MHz repetition rate , 200 ps pulse duration from a monolithic , passively Q - switched microchip laser
We present a monolithic passively Q-switched microchip laser generating 200 ps pulses at a wavelength of 1064 nm with a repetition rate of up to 2 MHz. While maintaining transversal and longitudinal single-mode operation, the pulse energy can be changed from 130 nJ to 400 nJ by varying the pump conditions of the laser. To the best of our knowledge, the repetition rate of 2 MHz is by far the hig...
متن کاملIncreasing output energy from a passively Q-switched Er:glass laser.
A method for increasing the output energy from newly developed passively Q-switched Er:glass eyesafe lasers is presented. The increase of energy is achieved by incorporating binary phase elements inside the laser cavities. Experimental results reveal that the output energies can be increased by more than a factor of two. Moreover, by manipulating the output phase with the binary phase elements,...
متن کاملA Passively Q-Switched, CW-Pumped Fe:ZnSe Laser
We report the demonstration of high-average-power passively Q-switched laser oscillation from Fe2+ ions in zinc selenide. A semiconductor saturable absorber mirror was used as a passive Q-switch element. Using a 60% R outcoupler, the pump-limited output power was 515 mW. The spectral center of the laser was 4045 nm. The pulse repetition frequency (PRF) at maximum power was ∼850 kHz with a corre...
متن کاملThermal tuning of laser pulse parameters in passively Q-switched Nd:YAG lasers.
Modifying the output pulses of a passively Q-switched Nd:YAG laser, operating at 1064 nm, was realized by heating the laser crystal. With the demonstrated laser setups, a 100 K temperature rise led to a more than 50% increase in the pulse energy and a more than 10% decrease in the pulse length. This method offers an effective way to tune the output of the laser without mechanical adjustment or ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Optics Express
سال: 2014
ISSN: 1094-4087
DOI: 10.1364/oe.22.024655